如何在外国猫舍买猫:燃料的问题!

来源:百度文库 编辑:神马品牌网 时间:2024/05/05 02:40:24
帮忙找一下
常见燃料优劣的对比

如何充分利用燃料
的资料...
谢谢了!!

可以的
有五年期的
回答者:aron123 - 助理 二级 5-6 18:56

公积金贷款在大部分城市是可以贷到25万的,期限可以自己选择,主要是看自己每月的收入是多少,因为如果还款期限短了,每月需还的本息就高了。
建议你选择10年或15年,10年每月约还1800左右,15年每月还2500左右,而5年每月得还4000多呢。反正是可以随时提前还款的,只是会多较部分贷款利息而已。

1、洁净煤技术

煤炭是我国分布最广、储量最多的能源资源,预计到下世纪中叶,我国的能源消费结构中煤炭仍将占主要地位。

但是,煤炭直接燃烧造成严重的环境污染。全国二氧 化硫(SO2)排放量及烟尘排放量中烧煤排放估计分别占90%和70%,还有NOX的污染问题。西南和华南已出现大面积酸雨区,并有扩大趋势。作为世界最大的煤炭消费国,烧煤排放的二氧化碳(CO2) 可能导致全球变暖的问题更是国际社会普遍关注的一个热点。因此,发展洁净煤技术,减少污染物排放,提高煤炭利用效率已成为我国,也是世界的一项重要的战略任务。

(1)先进燃烧和污染处理技术

洁净煤技术可用于燃烧前、中、后的任一阶段。

燃烧前的处理和净化技术

1)洗选处理。这是除去或减少原煤中所含的灰粉、矸石、硫等杂质,并按不同煤种、灰分、热值和粒度分成不同品种等级,以满足不同用户需要的方法。

1991年我国原煤洗选仅18.1%,洗选效率为85%,而发达国家原煤已全部洗选,洗选效率95%以上。

2)型煤加工。这是用机械方法将粉煤和低品位煤制成具有一定粒度和形状的煤制品。高硫煤成型时可加入适量固硫剂,大大减少SO2排放。我国民用型煤比烧散煤热效率可提高一倍。一般可节煤20-30%,烟尘和SO2减少40-60%,CO减少80%。在工业炉窑中使用可节煤15%,烟尘减少50-60%,SO2减少40-50%,NOX减少20-30%,

3)水煤浆。这是70年代发展起来的一种以煤代油的新燃料。它是把灰分很氏而挥发成分高的煤,研磨成250-300微米的微细煤粉,按煤约70%、水约30%的比例,加入0.5-1.0%分散剂和0.02-0.1的稳 定剂配制而成的,水煤浆可以像燃料油一样运输`储存和燃烧.我国制浆工艺已达国际水平,并已建成商业性示范工程。

燃烧中净化

1)先进的燃烧器。先进的燃烧器是通过改进电站锅炉以及工业锅炉和窑炉的设计和燃烧技术,以减少污染物排放,并提高燃烧效率。

国外已商业应用的有低NOX燃烧器,其燃烧过程是燃料和空气逐渐混合,以降低火焰温度,从而减少NOX生成;或者调节燃料与空气的混合比,提供只够燃料燃烧的氧,而不足以和氮结合成NOX。

我国已开发出新型水容量(热功率1兆瓦以上)煤粉燃烧器,燃烧效率达95%以上,在50%负荷条件下仍能稳定燃烧,且煤种适应性广,脱硫装置正在进一步开发。

2)流化床(沸腾炉)燃烧。流化床燃烧是把煤和吸附剂(石灰石)加入燃烧室的床层中,从炉底鼓风使床层悬浮,进入流化燃烧。流化形成湍流混合条件,从而提高燃烧效率;石灰石固硫,减少SO2排放;较低的燃烧温度(830-900℃)使NOX生成量大大减少。

流化床有鼓泡床和循环床两类,鼓泡床使煤保持在燃烧中心,流化燃烧主要在床内进行。循环床通过高速空气夹带固体颗粒进入并返回燃烧室,进行辅助燃烧,促使煤 粒沸腾燃尽。我国已出口巴基斯坦5万千瓦机组的沸腾炉。煤含硫6%,正在引进配12.5万千瓦机组的循环流化床。

燃烧后净化-烟气净化,包括SO2、NOX和颗粒物的控制。烟尘,SO2变成亚硫酸钙浆状物。干法是用浆状脱硫剂(石灰石)喷雾,与烟气中的SO2反应,生成硫酸钙,水分被蒸发,干燥颗粒用集尘器收集。这两种方法脱硫效率达90%。

烟气除尘,目前大型电站一般采用静电除尘器,除尘效率可达99%以上。

国外目前正在研究开发先进的脱硫工艺,以及可以同时脱除90%以上SO2和NOX的烟气净化新技术。

我国电站烟气净化尚处于初级阶段。90%的火电站装了除尘器,平均除尘效率90%,其中静电除尘仅占总数的12%,除尘效率96%。新建大型电站靠高烟囱(210米以上)扩散,扩散效果虽不差,可减轻城市空气污染,但不能解决地区的污染问题。

(2)煤的气化与液化

1)煤炭气化。煤炭气化是把经过适当处理的煤送入反应器,在一定的温度和压力下通过气化剂(空气或氧和蒸气),以一定的流动方式转化成气体。气化技术可将各类煤转化成各种气体产品,包括城市民用和工业用燃料气、发电燃料气、化工燃料气等。

煤的气化主要产生CO与H2灰分形成废渣排出。煤气化的好处是可在燃烧前脱除气态硫和氮组分。

1990年,我国煤制气消费量为235.9亿立方米。目前采用常压水煤气工艺、常压固体床--段气化工艺等。正在开发常压循环流化床和常压固体床两段气化工艺。

国外正开发多种煤气化新工艺,目的是扩大气化煤种,提高处理能力和转换效率,减少污染物排放。还有地下煤层气化技术已引起各国重视,也有发展前途,值得研究。

2)燃气--蒸汽联合循环发电。以煤气化生产燃料气,驱动燃气轮机发电,余气再用来烧锅炉,生产蒸气驱汽轮机发电。煤气经净化处理,可在燃烧前脱除硫和氮;联合循环可提高系统热效率。新一代煤气化联合循环发电的供电效率可达43-46%。

目前,国外已进入示范阶段的煤气化联合循环发电主要有三个方案:整体煤气化联合循环发电方案;增压流化床联合循环方案;第二代增压流化床煤气化联合循环发电方案。目前,在建和拟建的煤气化联合循环发电示范厂共24个。单套容量已达250-600兆瓦。

我国引进几套燃油联合循环机组,可供开发煤气化联合循 环发电的借鉴。另正在引进和开发高精燃气蒸汽联合循 环发电技术。关于增压流化床燃气--蒸汽联全循环发电技术,我国已研究开发,取得了阶级性成果。

3)燃煤磁流体发电技术。亦称等离子体发电。是使极高温度并高度电离的气体高速流经强磁场直接发电的新型发电厂。当燃煤得到的2600K以上的高温等离子气体以高速 流过强磁场时,气体中的电子受磁力作用和气化中的活化金属粒子(钾、铯)的相互磁撞,沿着与磁力线成 直的方位流向电极而发出直流电,经交、直流交换装置可送入电网。从磁流体出来的气体可送往常规锅炉,加热水产出蒸汽,驱动汽轮机发电,组成高效率的联合循环,总的热效率可达50-60%,由于磁流体发电所用的钾盐可有效地脱硫和可以用控制燃烧的方法来有效控制NOX的产生,故它又是一种低污染燃烧发电技术。

4)煤炭液化。煤炭液化分间接液化和直接液化两类。间接液化是煤先气化,生产原料气,经净化后再进行调质反应,调整H2与CO的比例。

直接液化是把煤直接转化成液体产品。已完成中试的工艺主要有供氢溶剂法(EDS),氢一煤法,SRC法。

80年代开发出第三代两段催化加氢液化新工艺和煤-油共炼工艺,提高了煤液化的经济性。

我国1980年重新开展煤炭直接液化研究,从国外引进了小型试验装置,迄今已对多种煤进行了液化性能和工艺条件试验,以及直接液化和煤-油共炼试验。

在间接液化方面,我国对煤制甲醇做了大量工作。甲醇是用含H2和CO的原料制造的,可用作化工原料、溶剂和燃料。甲醇用作汽车燃料,可在汽油中掺入5%,15%,25%(M-15,M-25),或用纯甲醇(M-100);甲醇和异丁烯合成甲基叔丁基醚(MTBE),用作无铅汽油辛烷值 加济;或直接合成低碳混 合醇(甲醇70%,低碳醇30%),用作汽油辛烷值 回剂。甲醇还可制取合成汽油。目前,我国甲醇年产能力超过60万吨,其中约20%用作燃料。煤制燃料甲醇已有成熟技术。

2、核能新技术

(1)新一代压水堆核电站

具有固有安全性的核电站反应堆。核反应堆在任何事故条件下都能自动停止运行,而且在最严重的假想事故条件下,停堆后的堆芯乘余热能依靠自然循环机理,导出堆外,保持堆内芯部和燃料元件的完整,从根本上排除堆芯深地、放射性逸出的可能,这种特性称为固有安全性,如改进压水堆、模块式高温气冷堆等。

(2)核燃料的增殖-快中子增殖反应堆。热中子反应堆主要是利用开然铀内的少量铀-235,以及在反应堆生成少量钚-239。因此热中子堆仅利用天然铀中2%左右的铀,世界上探明的铀资源难以保证核能的长期大规模利用。由快中子来产生和维持链式裂变反应的反应堆--快中子堆,才有可能实现核燃料的增殖。快中子堆以钚-239为裂变燃料,由铀-238为增殖原料,铀-238俘获快中子后又可生成钚-239。由于一个钚-239原子核裂变放出的中子数平均值比一个铀-235核裂变放出的中子数为多,而且新生的钚-239有可能比消耗的钚-239还多,这样就可以实现核燃料的增殖。1951年,美国建成世界上第一座按上述原理工作的新型核反应堆-快中子增殖堆。到70年代末,快中子堆示范电站输出电功率已达3万千瓦,开始进入实用阶段。我国“863”计划已计划建造快中子实验堆。快中子堆在理论上可以利用全部铀资源,但实际上由于各种损失,约可利用铀资源达到60%以上。

(3)新的 供热资源-低温核供热堆和高温气冷堆

低温核供热堆是压水堆型的热中子堆,但它的参数远低于核电站用的压水堆,其压力约为15巴,温度200℃左右。由于参数低,设备造价低,在经济上有竞争力,世界上如原苏联、加拿大、德国、瑞典、瑞士、法国等国都有发展低温核供热的计划。我国开展低温核供热堆已有多年,第一个5000千瓦的低温核供热试验堆已于1990年投入运行。

高温气冷堆是采用石墨作慢化剂和惰性气体氦气作冷却剂的热中子堆。由于石墨耐高温,所以反应堆出口的氦气温度可以高达950℃。元远高于核电站压水堆的出口水温300-350℃,现在设计的模块型高温气冷堆不仅可以高温供热,高效发电,而且有很好的固有安全性能。德国和美国在60年代就有实验堆和示范堆运行,目前日本正在建造3万千瓦热功率的高温气冷实验堆,我国“863”计划也决定在本世纪内建造1万千瓦热功率的实验堆。

(4)受控热核聚变能

1)聚变反应。核聚变是两个或两个以上的较轻原子核〖如氢(H)的两种同位素: (D)帮 (T)〗,在超高温等特定条件下聚合成一个较重的子核,同时释放出巨大能量。因为这种反应必须在极高的温度(1-5亿℃)下进行,所以叫热核反应。据计算,1公斤热核聚变燃料放出的能量为核裂变的4倍。

2)核聚变原料主要是氢、 和 。 也称重氢, 也称超重氢,1公斤海水中含有

0.034克 ,故地球上汪洋大海里有23.4万亿吨 ,足够人类使用几十亿年,是一项无究无尽的持久能源。

聚变能目前尚处于研究阶段,离实用还有相当差距。但基于其取之不尽的资源和优越的性能,能量大,且没有像裂变堆那样产生大量放射性废物,故其远景是很好的。预计在下世纪中叶可望能商 用。目前也有人考虑在其商用以前开展聚变-裂变混合堆的研究,其原理是用聚变反应产生的中子来增殖裂变燃料,充分利用裂变铀、钍核资源。我国也正在研究中。

3、新能源技术

(1)太阳能新技术

太阳能是一种巨大且对环境无污染的能源。

太阳能的转换和利用方式有:光-热转换、光-电转换和光-化学转换。

1)太阳能热利用和热发电技术。太阳能热利用是太阳辐射能量通过各种集热部件转变成热能后被直接利用,它可分低温(100-300℃):工业用热、制冷、空调、烹调等;高温(300℃以上):热发电、材料高温处理等。

太阳能节能建筑分主动式或衩动式两种。前者与常规能源采暖系统基本相同,仅以太阳能集热器作为热源代替传统锅炉。后者是利用建筑本身的结构,吸收和储存太阳能,达到取暖的目的。

太阳能热发电技术是利用太阳能产生热能,再转换成机械能的发电过程。发电系统主要同集热系统、热传输系统、蓄热器、热交换器以及汽轮发电机系统等组成。美国LUZ公司已建了9个电站,总装机容量为35万千瓦,平均效率达14%,电价约8美分/千瓦时。太阳能热发电技术涉及光学、传热学、材料科学、自动化等学科,是一门综合性交叉性很强的高新技术,也是太阳能开发和研究领域的难点。太阳能热发电技术的关键问题是太阳能的光辐射吸收和高效传热技术。

2)太阳能光电转换技术。太阳电池类型很多,如单晶硅电池、多晶硅电池、非晶硅电池、硫化 电池、 化电池等。美国、德国、日本都将太阳能光电技术列为新源首位,制造和发电成本已在特殊应用场合有一定竞争能力。当前发展主要障碍是光电池成本高。我国已能生产,年产达1000千瓦,能量转换率达14%。多晶硅电池采用熔化浇铸,定向凝固方法制造,有可能在现有基础上降低成本30%,向实用化推进一步,但要使成数量级下降,需改变制造工艺,制造硅膜太阳能电池和发电系统,需大力加强基础研究。

3)光化学转换技术。光化学是研究光和物质相互作用引起的化学反应的一个化学分支。光化学电池是利用光照射半导体和电解液界面,发生化学反应,在电解液内形成电流,并使水电离直接产生氢的电池。

我国据1991年不完全统计,已推广太阳能热水器180万平方米,被动太阳能节能房30万平方米,太阳能农用温室33万公顷,太阳灶12万台。我国光伏电池已有4.5兆瓦生产能力。高效电池、非晶硅电池的实验室水平与国外相差不大,但在向生产力转化和应用领域方面差距很大,有待开拓。

(2)风能技术

我国风能总储量估计为1.6×10 9千瓦,在世界各国排列第三,可开发利用的约为2/10,即约3亿千瓦.可以有效利用的风速范围为3-20米/秒.

目前全世界风力机用于发电的超过总量的2/3.

风力机可分为微型(1千瓦以下)、小型(1-10千瓦)、中型(10-100千瓦)、大型(100千瓦以上)。目前世界上最大的风力发电机在美国夏威 ,为3200千瓦 。

到1992年,全世界风力发电装机达2700万千瓦。主导产品是150-250千瓦机组,300-500千瓦机组开始小批量生产。

我国风力发电装机容量为20万千瓦左右,有小型风力发电机12万台,中小型风力发电厂9个。小型 风力机年产3万台,55千瓦、120千瓦、200千瓦风力发电机的研制和生产正在进行中。风力发是技术关键是大型风力机的叶片设计 、制造和安全性技术,二是优化运行控制方案与控制系统。

美国目前每千瓦时风电价约6-7美分,到2000年可能降至4美分。

(3)生物质能利用新技术

生物质能是绿色植物 通过绿素将太阳能转化为化学能而储存在生物质内部的能量。生物质能通常包括木材和森林工业废弃物、农业废弃物、水生植物、油料植物、城市与工业有机废弃物和动物粪便等。目前发展的生物质能利用技术有:

1)热化学转化技术。是将固体生物质转换成可燃气体、焦油、木炭等品位高的能源产品。

2)生物化学转换技术。主要指生物质在微生物的发酵作用下生成沼气、酒精等能源产品。沼气是有机物质在一定温度、温度、酸咸度和厌氧条件下经各种微生物发酵及分解作用而产生的一种混合可燃 气体。

3)生物质压块细密成型技术。是把粉碎烘干的生物质加入成型挤压机,在一定温度和压力下,形成较高密度的固体燃料,密度约为1.2-1.3克/厘米3,热值在20 焦/公斤左右。

4)化学转换技术。

1990年,我国消费生物质能约2.64亿吨标准煤,大部分是直接燃烧的.目前,我国已研制成功小型气化炉,气化率达70%以上。高效生物质燃烧炉,热效率达85%。

(4)波浪能和潮汐能

这两项海洋能源我国约有4-5亿千瓦,已建成1280千瓦时平潭幸福洋潮汐电站。我国波力发电极有特色,在基础研究方面已进入世界前沿,在实用上已有10千瓦级的岸式或漂浮式波力发电装置,并装备了航标灯。海洋能的开发应着重两个方面,其一是基础研究,如海洋能的收集与聚能,最佳转换方式和转换机械,随机、间断、不稳定转换技术等;其二是多能互补,与海湾、海岛、入海口其他新能源多能并举多能互补。

(5)氢能利用技术

从70年代初开始将氢应用于发电以及各种机动车和飞行器的燃料,已有不少试验装置在运行。氢作为能源使用时,无污染物产生,燃烧产物是水,而生产氢的原料也是水。氢的热值高,每克液氢可达120千焦,是汽油的2.8倍。

1)氢气制备。可以用电解法、热化学法、光电化学法或等离子体化学法制氢。

2)氢的储存。氢的储存可以用压缩、低温液化和贮氢金属吸存。

3)氢的利用。可作燃料,用于导航、机动车等;可用氢燃料电池通过电化学反应直接转换成电能;可用作各种能源的转换介质或中间载体。

作为人类长远的战略能源,氢可与其他一次能源结合发展各种氢能系统,特别是太阳能-氢能综合能源系统有很好发展前途。国际上认为氢能将是21世纪中后期最理想的能源。

4、节能新技术

我国的一些高耗能产品的能耗水平与国际水平比较,差距仍很大,除一般节能方法和采取的节能措施外,尚须采取节能瓣措施,新方法。

(1)余热回收利用技术

对于低品位余热利用,需研究强化传热的机理,研制包括热管在内的各种高效换热元件和紧凑换热器,是低品位热动力开发和发展热泵技术的重要储备;换热器小型化和降低成本是低品位余热动力回收装置提高经济上竞争性的主要技术关键。

1)热泵技术。是以消耗一部分高质能(机械能、电能)为裣,使热量从低温热源向高温热源传递。热泵可以用消耗少量高质能,获得较多的热能。

2)热管技术。热管是一种具有很高传热性能的元件。它利用封闭在管壳内的工作液体的相变(沸腾 、凝洁)来传递热量。当蒸气流向冷凝段,冷凝段由于受到冷却使蒸汽凝结成液体,液体再沿多孔材料借助毛细管的作用流回蒸发段,如此循环不已。作为一种传热新技术,广泛用于电子工业、空间技术和工业余热回收等方面。

(2)电子电力技术

电子电力技术在工业、交通运输、通信、家用电器等领域有广泛的前途。电子电力技术是节能的利器,例如:风机、水泵的阀门调节改为交流调速控制,可节电30-40%;直流传动改为可关断晶体管变频传动,可节电1/3以上;采用电子变频器和新型荧光粉的高效荧光灯,节电率可达80%。

据估计,全国推广应用电子电力技术,每年可节电400亿千瓦时,应用电子电力技术的各种节能产品,节 材率达40-90%。

(3)高效电动机

采用新材料、改进设计、具有低损耗、高功率因素的电机,电动机占我国总用电量的60%,高效电动机的效率比一般标准电动机高2-7%,永磁电动机可提高效率4-10%。

(4)高效节能照明技术

采用高频整流器降低灯的耗电率,采用稀土荧光粉吸收紫外线并变为可见光,提高发光效率。例如用节能灯代替白炽灯可提高效率50-80%。

(5)远红外线加热技术

是利用远红外辐射元件发出的远红外线,使被加热物体吸收,直接转变成热能的一种加热方式。远红外辐射电暖器就是一例。

(6)电热膜加热技术

是将电子电热膜直接制作在被加热体的表面上,当通电加热时,热量会很快专给 被加热体。因此电热膜加热效率达85%,而普通电热丝加热次序仅40%。电热摸是一种导电薄膜,它可用于电热杯、电淋浴器、电吹风、电暖气等电热器具。电热膜加热功率在100-2000瓦范围内,使用寿命高于2000小时。

当前世界各国都十分重视节能,国际能源界也有将节能称为第五能源,与煤、石油及天然气、水电、核电四大能源并列。览于节能对合理利用自然资源和保护环境的重要意义,各国对推动节能新技术都采取了各种政策措施,例如,采取补贴的政策等。我国已公布淘汰和停止生产高耗能产品,优先发展高效节能设备的政策。

总之,能源的开发利用与发展是直接关系到国民经济发展、社会进步和人民生活的大事。要坚持开发利用与节约并举,要重视发展清洁与可再生能源,保护环境;要依靠科技进步,加大技术改造力度,合理配置,提高能源利用效率;要加强能源开发与环境保护的基础与应用研究,使能源工业与经济、社会、环境协调发展,促进国民经济持续、快速、健康发展和社会全面进步。