非合金钢:什么叫基因突变

来源:百度文库 编辑:神马品牌网 时间:2024/05/02 18:48:10
是、高手请教!

http://www.pep.com.cn/200406/ca456978.htm
基因突变是指由于DNA碱基对的置换、增添或缺失而引起的基因结构的变化,亦称点突变。在自然条件下发生的突变叫自发突变,由人工利用物理因素或化学药剂诱发的突变叫诱发突变。基因突变是生物变异的主要原因,是生物进化的主要因素。在生产上人工诱变是产生生物新品种的重要方法。

根据基因结构的改变方式,基因突变可分为碱基置换突变和移码突变两种类型。

碱基置换突变:由一个错误的碱基对替代一个正确的碱基对的突变叫碱基置换突变。例如在DNA分子中的GC碱基对由CG或AT或TA所代替,AT碱基对由TA或GC或CG所代替。碱基替换过程只改变被替换碱基的那个密码子,也就是说每一次碱基替换只改变一个密码子,不会涉及到其他的密码子。引起碱基置换突变的原因和途径有两个。一是碱基类似物的掺入,例如在大肠杆菌培养基中加入5-溴尿嘧院(BU)后,会使DNA的一部分胸腺嘧啶被BU所取代,从而导致AT碱基对变成GC碱基对,或者GC碱基对变成AT碱基对。二是某些化学物质如亚硝酸、亚硝基胍、硫酸二乙酯和氮芥等,以及紫外线照射,也能引起碱基置换突变。

移码突变:基因中插入或者缺失一个或几个碱基对,会使DNA的阅读框架(读码框)发生改变,导致插入或缺失部位之后的所有密码子都跟着发生变化,结果产生一种异常的多肽链。移码突变诱发的原因是一些像吖啶类染料分子能插入DNA分子,使DNA复制时发生差错,导致移码突变。

根据遗传信息的改变方式,基因突变又可以分为同义突变、错义突变和无义突变三种类型。

同义突变:有时DNA的一个碱基对的改变并不会影响它所编码的蛋白质的氨基酸序列,这是因为改变后的密码子和改变前的密码子是简并密码子,它们编码同一种氨基酸,这种基因突变称为同义突变。

错义突变:由于一对或几对碱基对的改变而使决定某一氨基酸的密码子变为决定另一种氨基酸的密码子的基因突变叫错义突变。这种基因突变有可能使它所编码的蛋白质部分或完全失活,例如人血红蛋白β链的基因如果将决定第6位氨基酸(谷氨酸)的密码子由CTT变为CAT,就会使它合成出的β链多肽的第6位氨基酸由谷氨酸变为缬氨酸,从而引起镰刀形细胞贫血病。

无义突变:由于一对或几对碱基对的改变而使决定某一氨基酸的密码子变成一个终止密码子的基因突变叫无义突变。其中密码子改变为UAG的无义突变又叫琥珀突变,密码子改变成UAA的无义突变又叫赭石突变

分子遗传学中,营养缺陷型是指通过诱变而使得一些营养物质(如氨基酸)的合成能力出现缺陷,必须在基本培养基(如由葡萄糖和无机盐组成的培养基)中加入相应的有机成分才能正常生长的突变菌株或突变细胞。例如,野生型大肠杆菌在基本培基中能够正常生长,而组氨酸缺陷型的大肠杆菌(记为His-)只有在基本培养基中加入适量的组氨酸时才能正常生长。突变型基因转变成野生型基因的过程叫回复突变。例如把大量的His-大肠杆菌细胞接种在不含组氨酸的基本培养基中,会有极少量的细胞能够生长,出现这种情况的原因主要是这些细胞的组氨酸缺陷基因已回复为正常基因(记为His+)。

某一突变基因的表型效应由于第二个突变基因的出现而恢复正常时,称后一突变基因为前者的抑制基因。抑制基因并没有改变突变基因的DNA结构,而只是使突变型的表型恢复正常。例如,酪氨酸的密码子是UAC,置换突变使UAC变为无义密码子UAG后翻译便到此停止。如果酪氨酸tR-NA基因发生突变,使它的反密码子由 AUG变为 AUC时,其tRNA仍然能与酪氨酸结合,而且它的反密码子AUC也能与突变的无义密码子UAG配对。因此这一突变型tRNA,能使无义突变密码子位置上照常出现酪氨酸,而使翻译正常进行。这里酪氨酸tRNA的突变基因便是前一个无义突变的抑制基因。

基因突变的特点

基因突变作为生物变异的一个重要来源,它具有以下主要特点:

第一,基因突变在生物界中是普遍存在的。无论是低等生物,还是高等的动植物以及人,都可能发生基因突变。基因突变在自然界的物种中广泛存在。例如,棉花的短果枝、水稻的矮杆、糯性,果蝇的白眼、残翅,家鸽羽毛的灰红色,以及人的色肓、糖尿病、白化病等遗传病,都是突变性状。自然条件下发生的基因突变叫做自然突变,人为条件下诱发产生的基因突变叫做诱发突变。

第二,基因突变是随机发生的。它可以发生在生物个体发育的任何时期和生物体的任何细胞。一般来说,在生物个体发育的过程中,基因突变发生的时期越迟,生物体表现突变的部分就越少。例如,植物的叶芽如果在发育的早期发生基因突变,那么由这个叶芽长成的枝条,上面着生的叶、花和果实都有可能与其他枝条不同。如果基因突变发生在花芽分化时,那么,将来可能只在一朵花或一个花序上表现出变异。

基因突变可以发生在体细胞中,也可以发生在生殖细胞中。发生在生殖细胞中的突变,可以通过受精作用直接传递给后代。发生在体细胞中的突变,一般是不能传递给后代的。

第三,在自然状态下,对一种生物来说,基因突变的频率是很低的。据估计,在高等生物中,大约十万个到一亿个生殖细胞中,才会有一个生殖细胞发生基因突变,突变率是105~108。不同生物的基因突变率是不同的。例如,细菌和噬菌体等微生物的突变率比高等动值物的要低。同一种生物的不同基因,突变率也不相同。例如,玉米的抑制色素形成的基因的突变率为1.06×10-4,而黄色胚乳基因的突变率为2.2×10-6.

第四,大多数基因突变对生物体是有害的,由于任何一种生物都是长期进化过程的产物,它们与环境条件已经取得了高度的协调。如果发生基因突变,就有可能破坏这种协调关系。因此,基因突变对于生物的生存往往是有害的。例如,绝大多数的人类遗传病,就是由基因突变造成的,这些病对人类健康构成了严重威胁。又如,植物中常见的白化苗,也是基因突变形成的。这种苗由于缺乏叶绿素,不能进行光合作用制造有机物,最终导致死亡。但是,也有少数基因突变是有利的。例如,植物的抗病性突变、耐旱性突变、微生物的抗药性突变等,都是有利于生物生存的。

第五,基因突变是不定向的。一个基因可以向不同的方向发生突变,产生一个以上的等位基因。例如,控制小鼠毛色的灰色基因(A+)可以突变成黄色基因(AY)。也可以突变成黑色基因(a).但是每一个基因的突变,都不是没有任何限制的。例如,小鼠毛色基因的突变,只限定在色素的范围内,不会超出这个范围。

基因突变是指基因组DNA分子发生的突然的可遗传的变异。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种隐定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。于是后代的表现中也就突然地出现祖先从未有的新性状。例如英国女王维多利亚家族在她以前没有发现过血友病的病人,但是她的一个儿子患了血友病,成了她家族中第一个患血友病的成员。后来,又在她的外孙中出现了几个血友病病人。很显然,在她的父亲或母亲中产生了一个血友病基因的突变。这个突变基因传给了她,而她是杂合子,所以表现型仍是正常的,但却通过她传给了她的儿子。基因突变的后果除如上所述形成致病基因引起遗传病外,还可造成死胎、自然流产和出生后天折等,称为致死性突变;当然也可能对人体并无影响,仅仅造成正常人体间的遗传学差异;甚至可能给个体的生存带来一定的好处。由于DNA碱基对的置换、增添或缺失而引起的基因结构的变化,亦称点突变。在自然条件下发生的突变叫自发突变,由人工利用物理因素或化学药剂诱发的突变叫诱发突变。基因突变是生物变异的主要原因,是生物进化的主要因素。在生产上人工诱变是产生生物新品种的重要方法。

根据基因结构的改变方式,基因突变可分为碱基置换突变和移码突变两种类型。

碱基置换突变:由一个错误的碱基对替代一个正确的碱基对的突变叫碱基置换突变。例如在DNA分子中的GC碱基对由CG或AT或TA所代替,AT碱基对由TA或GC或CG所代替。碱基替换过程只改变被替换碱基的那个密码子,也就是说每一次碱基替换只改变一个密码子,不会涉及到其他的密码子。引起碱基置换突变的原因和途径有两个。一是碱基类似物的掺入,例如在大肠杆菌培养基中加入5-溴尿嘧院(BU)后,会使DNA的一部分胸腺嘧啶被BU所取代,从而导致AT碱基对变成GC碱基对,或者GC碱基对变成AT碱基对。二是某些化学物质如亚硝酸、亚硝基胍、硫酸二乙酯和氮芥等,以及紫外线照射,也能引起碱基置换突变。

移码突变:基因中插入或者缺失一个或几个碱基对,会使DNA的阅读框架(读码框)发生改变,导致插入或缺失部位之后的所有密码子都跟着发生变化,结果产生一种异常的多肽链。移码突变诱发的原因是一些像吖啶类染料分子能插入DNA分子,使DNA复制时发生差错,导致移码突变。

根据遗传信息的改变方式,基因突变又可以分为同义突变、错义突变和无义突变三种类型。

同义突变:有时DNA的一个碱基对的改变并不会影响它所编码的蛋白质的氨基酸序列,这是因为改变后的密码子和改变前的密码子是简并密码子,它们编码同一种氨基酸,这种基因突变称为同义突变。

错义突变:由于一对或几对碱基对的改变而使决定某一氨基酸的密码子变为决定另一种氨基酸的密码子的基因突变叫错义突变。这种基因突变有可能使它所编码的蛋白质部分或完全失活,例如人血红蛋白β链的基因如果将决定第6位氨基酸(谷氨酸)的密码子由CTT变为CAT,就会使它合成出的β链多肽的第6位氨基酸由谷氨酸变为缬氨酸,从而引起镰刀形细胞贫血病。

无义突变:由于一对或几对碱基对的改变而使决定某一氨基酸的密码子变成一个终止密码子的基因突变叫无义突变。其中密码子改变为UAG的无义突变又叫琥珀突变,密码子改变成UAA的无义突变又叫赭石突变

分子遗传学中,营养缺陷型是指通过诱变而使得一些营养物质(如氨基酸)的合成能力出现缺陷,必须在基本培养基(如由葡萄糖和无机盐组成的培养基)中加入相应的有机成分才能正常生长的突变菌株或突变细胞。例如,野生型大肠杆菌在基本培基中能够正常生长,而组氨酸缺陷型的大肠杆菌(记为His-)只有在基本培养基中加入适量的组氨酸时才能正常生长。突变型基因转变成野生型基因的过程叫回复突变。例如把大量的His-大肠杆菌细胞接种在不含组氨酸的基本培养基中,会有极少量的细胞能够生长,出现这种情况的原因主要是这些细胞的组氨酸缺陷基因已回复为正常基因(记为His+)。

某一突变基因的表型效应由于第二个突变基因的出现而恢复正常时,称后一突变基因为前者的抑制基因。抑制基因并没有改变突变基因的DNA结构,而只是使突变型的表型恢复正常。例如,酪氨酸的密码子是UAC,置换突变使UAC变为无义密码子UAG后翻译便到此停止。如果酪氨酸tR-NA基因发生突变,使它的反密码子由 AUG变为 AUC时,其tRNA仍然能与酪氨酸结合,而且它的反密码子AUC也能与突变的无义密码子UAG配对。因此这一突变型tRNA,能使无义突变密码子位置上照常出现酪氨酸,而使翻译正常进行。这里酪氨酸tRNA的突变基因便是前一个无义突变的抑制基因。

基因突变的特点

基因突变作为生物变异的一个重要来源,它具有以下主要特点:

第一,基因突变在生物界中是普遍存在的。无论是低等生物,还是高等的动植物以及人,都可能发生基因突变。基因突变在自然界的物种中广泛存在。例如,棉花的短果枝、水稻的矮杆、糯性,果蝇的白眼、残翅,家鸽羽毛的灰红色,以及人的色肓、糖尿病、白化病等遗传病,都是突变性状。自然条件下发生的基因突变叫做自然突变,人为条件下诱发产生的基因突变叫做诱发突变。

第二,基因突变是随机发生的。它可以发生在生物个体发育的任何时期和生物体的任何细胞。一般来说,在生物个体发育的过程中,基因突变发生的时期越迟,生物体表现突变的部分就越少。例如,植物的叶芽如果在发育的早期发生基因突变,那么由这个叶芽长成的枝条,上面着生的叶、花和果实都有可能与其他枝条不同。如果基因突变发生在花芽分化时,那么,将来可能只在一朵花或一个花序上表现出变异。

基因突变可以发生在体细胞中,也可以发生在生殖细胞中。发生在生殖细胞中的突变,可以通过受精作用直接传递给后代。发生在体细胞中的突变,一般是不能传递给后代的。

第三,在自然状态下,对一种生物来说,基因突变的频率是很低的。据估计,在高等生物中,大约十万个到一亿个生殖细胞中,才会有一个生殖细胞发生基因突变,突变率是105~108。不同生物的基因突变率是不同的。例如,细菌和噬菌体等微生物的突变率比高等动值物的要低。同一种生物的不同基因,突变率也不相同。例如,玉米的抑制色素形成的基因的突变率为1.06×10-4,而黄色胚乳基因的突变率为2.2×10-6.

第四,大多数基因突变对生物体是有害的,由于任何一种生物都是长期进化过程的产物,它们与环境条件已经取得了高度的协调。如果发生基因突变,就有可能破坏这种协调关系。因此,基因突变对于生物的生存往往是有害的。例如,绝大多数的人类遗传病,就是由基因突变造成的,这些病对人类健康构成了严重威胁。又如,植物中常见的白化苗,也是基因突变形成的。这种苗由于缺乏叶绿素,不能进行光合作用制造有机物,最终导致死亡。但是,也有少数基因突变是有利的。例如,植物的抗病性突变、耐旱性突变、微生物的抗药性突变等,都是有利于生物生存的。

第五,基因突变是不定向的。一个基因可以向不同的方向发生突变,产生一个以上的等位基因。例如,控制小鼠毛色的灰色基因(A+)可以突变成黄色基因(AY)。也可以突变成黑色基因(a).但是每一个基因的突变,都不是没有任何限制的。例如,小鼠毛色基因的突变,只限定在色素的范围内,不会超出这个范围。

基因突变是指基因组DNA分子发生的突然的可遗传的变异。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种隐定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。于是后代的表现中也就突然地出现祖先从未有的新性状。例如英国女王维多利亚家族在她以前没有发现过血友病的病人,但是她的一个儿子患了血友病,成了她家族中第一个患血友病的成员。后来,又在她的外孙中出现了几个血友病病人。很显然,在她的父亲或母亲中产生了一个血友病基因的突变。这个突变基因传给了她,而她是杂合子,所以表现型仍是正常的,但却通过她传给了她的儿子。基因突变的后果除如上所述形成致病基因引起遗传病外,还可造成死胎、自然流产和出生后天折等,称为致死性突变;当然也可能对人体并无影响,仅仅造成正常人体间的遗传学差异;甚至可能给个体的生存带来一定的好处。

是啊

真厉害