飞机追ufo事件:近似于绝对零度的温度 是怎样实现的?

来源:百度文库 编辑:神马品牌网 时间:2024/04/29 13:36:20

一般获得低温是靠气体的液化而获得的,但这种方法很难达到非常低的温度,现在有了一些新方法,例如绝热去磁法。

原理:电磁学中我们知道,顺磁性物质是具有固有磁矩的,但无磁场时,因为无规则热扰动,各分子磁矩的取向杂乱.当我们加一个外磁场时,每个分子的磁矩要转到外磁场方向上,在这个过程中要放热 ,我们把热量传走,就可以使物体的温度降。

一般做法:将已经预冷的物质(高于1K)放入一个容器内,并在它里面充满氦气,然后加上磁场.物质被磁化过程中放出的热量,传给氦气,随后氦气抽走,容器内形成真空,从而使物质与周围热隔绝.最后,撤去磁场,物质自身也要去磁吸热,从而更加降低了自身的温度。
绝热去磁法也分好几种具体做法,主要有:顺磁盐绝热去磁 ,核绝热去磁。

还有一种致冷法叫做坡密朗丘克致冷.在 温度在0.32K以下时,液态3He的熵比固态3He的熵要小,因而加压发生液-固相变时要吸热,从而达到致冷效果.此法由I.Y.坡密朗丘克于1950年提出,1965年实验成功.此法常在稀释致冷机的基础上使用,可达到的极限低温为1毫开.1972年在此低温附近发现了3He的超流新相。

用"绝热去磁法"在超低温领域取得了一系列重要进展:
1933年达到0.25K
1955年达到了10E-3K
1956年达到1E-6K(百万分之一度)
1957年,达到2E-5K(百万分之二度)
1979年达到1E-8K(亿分之一度)
1995年达到2E-9K(五亿分之一度)
尤若数学极限中的渐近线,越是逼近绝对零度变化率就越小,实验也越困难,到达绝对零度的希望就越渺茫,因此绝对零度似乎是一个不可思议的极限。

新找到一篇资料:
http://www.cngspw.com/bbs/displayBBS.asp?RoomID=4&BBSID=2836
超低温技术
ultra-low temperature,techniques for
获得接近于绝对零度低温的技术。C.von林德最先利用节流膨胀的焦耳?汤姆孙效应,制成空气液化机(空气中氮的临界温度为126.2K,氧的临界温度为154.8K)。并于1895年创办了大型液化空气工厂,1898年H.卡末林?昂内斯以液态空气预冷氢,利用焦耳?汤姆孙效应使氢气液化(氢的临界温度为33.3K)。1908年昂内斯用液氢作预冷使最难液化的氦液化(氦的临界温度为5.3K)。1934年P.卡皮察制成了不需液氢只用液氮预冷的氦液化机。液氦在 1大气压的沸点为4.2K,用减压蒸发法可得0.5K以下的低温。进一步降低温度的主要方法有:
顺磁盐绝热去磁 顺磁盐中磁性离子周围是非磁性离子和结晶水,磁距间的作用很小,在绝热去磁的起始温度(~1K)下各磁矩的取向作无规分布。加外磁场后顺磁盐波磁化,各磁矩作有序排列,熵减小。在绝热条件下撤去外磁场,磁矩恢复混乱排列,磁矩的熵增加,但绝热过程总熵不变,故晶格振动的熵减小,表现为温度下降。绝热去磁时先将顺磁盐用液氦预冷,加外磁场使之磁化,磁化热被液氦吸收,然后在绝热条件下去磁,可产生明显的致冷效果。绝热去磁法分别由W.F.吉奥克和P.J.W.德拜于1926年独立地提出,1933年吉奥克在实验上获得成功。绝热去磁法可得几mK的低温,60年代以前一直是获得这一量级低温的唯一方法。此法的缺点是不能连续工作,致冷能力较低。常用顺磁盐有硝酸镁铈(CMN)和铬钾钒(CPA)等。
稀释致冷机 1956年H.伦敦最先提出稀释致冷机的原理,1965年第一台稀释致冷机诞生,它是利用3He-4He混合液的性质设计的致冷机。3He和4He的混合液在0.87K以上温度时是完全互溶的溶液,在0.87K以下时发生相分离,即分成含3He较多的浓相和含3He较少的稀相两部分,两者间构成一界面,浓相浮于稀相之上。当3He原子从浓相通过界面进入稀相时,类似于普通液体通过液面蒸发成气体,要吸热致冷。进入稀相的3He原子通过循环系统重新回到浓相。稀释致冷机结构简单可靠,致冷能力强,可长时间连续工作,可得稳定的可调节的超低温,这是传统的顺磁盐绝热去磁法所无法比拟的,现已获广泛应用。用此法得到的最低温度为1.5mK。
坡密朗丘克致冷 温度在0.32K以下时,液态3He的熵比固态3He的熵要小,因而加压发生液-固相变时要吸热,从而达到致冷效果。此法由I.Y.坡密朗丘克于1950年提出,1965年实验成功。此法常在稀释致冷机的基础上使用,可达到的极限低温为1mK。1972年在此低温附近发现了3He的超流新相(见液态氦)。
核绝热去磁 原子核的自旋磁矩比电子自旋磁矩要小得多,故原子核磁矩间的相互作用也比电子磁矩间的相互作用弱得多。直到mK温度范围,核磁矩仍然是混乱取向,因而可用核绝热去磁法使核系统降温。通常以稀释致冷机预冷,用超导磁体产生强磁场,使核自旋磁化,再绝热去磁。此法由C.J.戈特和N.库尔蒂分别于1934年和1935年提出,1956年库尔蒂成功地使金属铜的核自旋温度冷却到16μK。后来用二级核绝热去磁使核自旋温度达到50nK(5×10-8K)的极低温,第一次观察到铜中核磁矩的自发反铁磁排列。物质内部的热运动包括核自旋运动、晶格振动和自由电子运动,3种运动对内能都有贡献,在较高温度时3种运动间的能量交换迅速,可处于热平衡状态,可用同一温度来描述。在极低温度下,三者间的能量交换较慢,不能很快建立热平衡,故应区分与不同运动相联系的温度。与核自旋运动相联系的温度称为核自旋温度。核绝热去磁只能降低核自旋温度。尽管核自旋温度已降到50nK量级,但晶格温度可能仍为mK量级。

压缩二氧化碳!干冰俗称!

加压