翼龙贷的产品与服务:聚变反应到底是怎么进行的?

来源:百度文库 编辑:神马品牌网 时间:2024/04/30 02:09:18

两个轻的原子核相碰,可以形成一个原子核并释放出能量,这就是聚变反应,在这种反应中所释放的能量称聚变能。聚变能是核能利用的又一重要途径。

最重要的聚变反应有:

式中D是氘核(重氢)、T是氚核(超重氢)。以上两组反应总的效果是:

即每“烧’掉6个氘核共放出43.24MeV能量,相当于每个核子平均放出3.6MeV。它比n+裂变反应中每个核子平均放出200/236=0.85MeV高4倍。因此聚变能是比裂变能更为巨大的一种核能。

核聚变能利用的燃料是氘(D)和氚。氘在海水中大量存在。海水中大约每600个氢原子中就有一个氘原子,海水中氘的总量约40万亿吨。每升海水中所含的氘完全聚变所释放的聚变能相当于300升汽油燃料的能量。按目前世界消耗的能量计算,海水中氘的聚变能可用几百亿年。氚可以有锂制造。锂主要有锂-6和锂-7两种同位素。锂-6吸收一个热中子后,可以变成氚并放出能量。锂-7要吸收快中子才能变成氚。地球上锂的储量虽比氘少得多,也有两千多亿吨。用它来制造氚,足够用到人类使用氘、氘聚变的年代。因此,核聚变能是一种取之不尽用之不竭的新能源。

在可以预见的地球上人类生存的时间内,水的氘,足以满足人类未来几十亿年对能源的需要。从这个意义上说,地球上的聚变燃料,对于满足未来的需要说来,是无限丰富的,聚变能源的开发,将“一劳永逸”地解决人类的能源需要。六十多年来科学家们不懈的努力,已在这方面为人类展现出美好的前景。

典型的聚变反应是

411H—→42He+20-1e+2.67×107eV

21H+21H—→32He+10n+3.2×106eV

21H+21H—→31H+11H+4×106eV

31H+21H—→42He+10n+1.76×107eV

后三个反应的净反应是

521H—→42He+32He+11H+210n+2.48×107eV

即每5个21H聚变后放出2.48×107eV能量。

氘是相当丰富的氢同位素,在海洋中每6500个氢原子就有1个氘原子,这意味着海洋是极大量氘的潜在来源。仅在1L海水中就有1.03×1022个氘原子,就是说每1Km3海水中氘原子所具有的潜在能量相当于燃烧13600亿桶原油的能量,这个数字约为地球上蕴藏的石油总储量。

要使原子核之间发生聚变,必须使它们接近到飞米级。要达到这个距离,就要使核具有很大的动能,以克服电荷间极大的斥力。要使核具有足够的动能,必须把它们加热到很高的温度(几百万摄氏度以上)。因此,核聚变反应又叫热核反应。原子弹爆炸产生的高温可引起热核反应,氢弹就是这样爆炸的。

受控核聚变是等离子态的原子核在高温下有控制地发生大量原子核聚变的反应,同时释放出能量。氘是最重要的聚变燃料,海洋是氘的潜在来源,一旦能实现以氘为基本燃料的受控核聚变,人们就几乎拥有了取之不尽、用之不竭的能源。氢弹爆炸释放出来的大量聚变能、原子弹爆炸释放出来的大量裂变能,都是不可控制的。在第一颗原子弹爆炸后仅十多年,人们就找到控制裂变反应的办法,并建成了裂变电站。原以为氢弹炸爆后能建成聚变电站,但并不如此简单,即使在地球条件下能发生的聚变反应:

31H+21H—→42He+10n+1.76×107eV

也只能在极高的温度(>4000℃)和足够大的碰撞几率条件下,才能大量发生。因此实际可作为能源使用的受控热核聚变反应,必须在产生并加热等离子体到亿万摄氏度高温的同时,还要有效约束这一高温等离子体。这就是近几十年内研究的难题和期望攻克的目标。我国的中科院物理所、中科院等离子物理所、西南物理研究院在实验工程和理论研究各方面都做了许多的工作,也取得了许多重要的进展。

核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。

相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。

目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走。

目前主要的几种可控核聚变方式:

超声波核聚变
激光约束(惯性约束)核聚变
磁约束核聚变(托卡马克)
核聚变
比原子弹威力更大的核武器—氢弹,就是利用核聚变来发挥作用的。核聚变的

过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才

能发生核聚变,比如氢的同位素氘(dao)、氚(chuan)等。核聚变也会放出巨大的能

量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光

和热就是由核聚变产生的。

核聚变能释放出巨大的能量,但目前人们只能在氢弹爆炸的一瞬间实现非受控

的人工核聚变。而要利用人工核聚变产生的巨大能量为人类服务,就必须使核聚变

在人们的控制下进行,这就是受控核聚变。

实现受控核聚变具有极其诱人的前景。不仅因为核聚变能放出巨大的能量,而

且由于核聚变所需的原料——氢的同位素氘可以从海水中提取。经过计算,1升海水

中提取出的氘进行核聚变放出的能量相当于100升汽油燃烧释放的能量。全世界的海

水几乎是“取之不尽”的,因此受控核聚变的研究成功将使人类摆脱能源危机的困

扰。

但是人们现在还不能进行受控核聚变,这主要是因为进行核聚变需要的条件非

常苛刻。发生核聚变需要在1亿度的高温下才能进行,因此又叫热核反应。可以想象,

没有什么材料能经受得起1亿度的高温。此外还有许多难以想象的困难需要去克服。

尽管存在着许多困难,人们经过不断研究已取得了可喜的进展。科学家们设计

了许多巧妙的方法,如用强大的磁场来约束反应,用强大的激光来加热原子等。可

以预计,人们最终将掌握控制核聚变的方法,让核聚变为人类服务。

简单的回答:根据爱因斯坦质能方程E=mc2.
原子核发生聚变时,有一部分质量转化为能量释放出来.
只要微量的质量就可以转化成很大的能量.