176传奇装备:【物理】关于超导体

来源:百度文库 编辑:神马品牌网 时间:2024/05/01 06:40:52
急需关于超导体的资料~尤其是关于高温超导体及其应用前景~具体点~多多益善哦~谢谢了~
在线等待中~~~~~~~~~

高温超导体的磁共振模式

--------------------------------------------------------------------------------

[发布时间:20020702]
[来源:http://www.kexuemag.com/artdetail.asp?name=384]

来自德国、法国和俄罗斯的科学家利用中子散射技术,在高温超导体的一个成员单铜氧层Tl2Ba2CuO6+δ中观察到了所谓的磁共振模式,进一步证实了这种模式在高温超导体中存在的一般性。该发现有助于对铜氧化物超导体机制的研究。

高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。本期Science所报道的结果意味着中子散射领域里一个长期存在的困惑很有可能得到解决。

早在1991年,法国物理学家利用中子散射技术在双铜氧层YBa2Cu3O6+δ超导体单晶中发现了一个微弱的磁性信号。随后的实验证明,这种信号仅在超导体处于超导状态时才显著增强并被称为磁共振模式。这个发现表明电子的自旋以某种合作的方式产生一种集体的有序运动,而这是常规超导体所不具有的。这种集体运动有可能参与了电子的配对,并对超导机制负责,其作用类似于常规超导体内引起电子配对的晶格振动。但是,在另一个超导体La2-xSrxCuO4+δ(单铜氧层)中,却无法观察到同样的现象。这使物理学家怀疑这种磁共振模式并非铜氧化物超导体的普遍现象。1999年,在Bi2Sr2CaCu2O8+δ单晶上也观察到了这种磁共振信号。但由于Bi2Sr2CaCu2O8+δ与YBa2Cu3O6+δ一样,也具有双铜氧层结构,关于磁共振模式是双铜氧层的特殊表征还是“普遍”现象的困惑并未得到彻底解决。

理想的候选者应该是典型的高温超导晶体,结构尽可能简单,只具有单铜氧层。困难在于,由于中子与物质的相互作用很弱,只有足够大的晶体才可能进行中子散射实验。随着中子散射技术的成熟,对晶体尺寸的要求已降低到0.1厘米3的量级。晶体生长技术的进步,也使Tl2Ba2CuO6+δ单晶体的尺寸进入毫米量级,而它正是一个理想的候选者。科学家把300个毫米量级的Tl2Ba2CuO6+δ单晶以同一标准按晶体学取向排列在一起,构成一个“人造”单晶,“提前”达到了中子散射的要求。经过近两个月散射谱的搜集与反复验证,终于以确凿的实验数据显示在这样一个近乎理想的高温超导单晶上也存在磁共振模式。这一结果说明磁共振模式是高温超导的一个普遍现象。而La2-xSrxCuO4+δ体系上磁共振模式的缺席只是“普遍”现象的例外,这可能与其结构的特殊性有关。

关于磁共振模式及其与电子间相互作用的理论和实验研究一直是高温超导领域的热点之一,上述结果将引起许多物理学家的关注与兴趣。

20世纪80年代是超导电性的探索与研究的黄金年代。1981年合成了有机超导体,1986年缪勒和柏诺兹发现了一种成分为钡、镧、铜、氧的陶瓷性金属氧化物LaBaCuO4,其临界温度约为35K。由于陶瓷性金属氧化物通常是绝缘物质,因此这个发现的意义非常重大,缪勒和柏诺兹因此而荣获了1987年度诺贝尔物理学奖。
1987年在超导材料的探索中又有新的突破,美国休斯顿大学物理学家朱经武小组与中国科学院物理研究所赵忠贤等人先后研制成临界温度约为90K的超导材料YBCO(钇铋铜氧)。
1988年初日本研制成临界温度达110K的Bi-Sr-Ca-Cu-O超导体。至此,人类终于实现了液氮温区超导体的梦想,实现了科学史上的重大突破。这类超导体由于其临界温度在液氮温度(77K)以上,因此被称为高温超导体。
自从高温超导材料发现以后,一阵超导热席卷了全球。科学家还发现铊系化合物超导材料的临界温度可达125K,汞系化合物超导材料的临界温度则高达135K。如果将汞置于高压条件下,其临界温度将能达到难以置信的164K。
1997年,研究人员发现,金铟合金在接近绝对零度时既是超导体同时也是磁体。1999年科学家发现钌铜化合物在45K时具有超导电性。由于该化合物独特的晶体结构,它在计算机数据存储中的应用潜力将是非常巨大的。

超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。

然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。

超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。

在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。