加拿大研究生学校列表:什么是超频

来源:百度文库 编辑:神马品牌网 时间:2024/04/25 10:22:35
怎么超频啊

http://sdvick.bbs.topzj.com/viewthread.php?tid=5568
建议自己去看 很详细很多 还有图~我只能弄来一部分。

什么是超频?

超频是使得各种各样的电脑部件运行在高于额定速度下的方法。例如,如果你购买了一颗Pentium 4 3.2GHz处理器,并且想要它运行得更快,那就可以超频处理器以让它运行在3.6GHz下。

郑重声明!

警告:超频可能会使部件报废。超频有风险,如果超频的话整台电脑的寿命可能会缩短。如果你尝试超频的话,我将不对因为使用这篇指南而造成的任何损坏负责。这篇指南只是为那些大体上接受这篇超频指南/FAQ以及超频的可能后果的人准备的。

为什么想要超频?是的,最明显的动机就是能够从处理器中获得比付出更多的回报。你可以购买一颗相对便宜的处理器,并把它超频到运行在贵得多的处理器的速度下。如果愿意投入时间和努力的话,超频能够省下大量的金钱;如果你是一个象我一样的狂热玩家的话,超频能够带给你比可能从商店买到的更快的处理器。

超频的危险

首先我要说,如果你很小心并且知道要做什么的话,那对你来说,通过超频要对计算机造成任何永久性损伤都是非常困难的。如果把系统超得太过的话,会烧毁电脑或无法启动。但仅仅把它推向极限是很难烧毁系统的。

然而仍有危险。第一个也是最常见的危险就是发热。在让电脑部件高于额定参数运行的时候,它将产生更多的热量。如果没有充分散热的话,系统就有可能过热。不过一般的过热是不能摧毁电脑的。由于过热而使电脑报废的唯一情形就是再三尝试让电脑运行在高于推荐的温度下。就我说,应该设法抑制在60 C以下。

不过无需过度担心过热问题。在系统崩溃前会有征兆。随机重启是最常见的征兆了。过热也很容易通过热传感器的使用来预防,它能够显示系统运行的温度。如果你看到温度太高的话,要么在更低的速度下运行系统,要么采用更好的散热。稍后我将在这篇指南中讨论散热。

超频的另一个“危险”是它可能减少部件的寿命。在对部件施加更高的电压时,它的寿命会减少。小小的提升不会造成太大的影响,但如果打算进行大幅超频的话,就应该注意寿命的缩短了。然而这通常不是问题,因为任何超频的人都不太可能会使用同一个部件达四、五年之久,并且也不可能说任何部件只要加压就不能撑上4-5年。大多数处理器都是设计为最高使用10年的,所以在超频者的脑海中,损失一些年头来换取性能的增加通常是值得的。
基础知识

为了了解怎样超频系统,首先必须懂得系统是怎样工作的。用来超频最常见的部件就是处理器了。

在购买处理器或CPU的时候,会看到它的运行速度。例如,Pentium 4 3.2GHz CPU运行在3200MHz下。这是对一秒钟内处理器经历了多少个时钟周期的度量。一个时钟周期就是一段时间,在这段时间内处理器能够执行给定数量的指令。所以在逻辑上,处理器在一秒内能完成的时钟周期越多,它就能够越快地处理信息,而且系统就会运行得越快。1MHz是每秒一百万个时钟周期,所以3.2GHz的处理器在每秒内能够经历3,200,000,000或是3十亿200百万个时钟周期。相当了不起,对吗?

超频的目的是提高处理器的GHz等级,以便它每秒钟能够经历更多的时钟周期。计算处理器速度的公式是这个:

FSB(以MHz为单位)×倍频 = 速度(以MHz为单位)。

现在来解释FSB和倍频是什么:

FSB(对AMD处理器来说是HTT*),或前端总线,就是整个系统与CPU通信的通道。所以,FSB能运行得越快,显然整个系统就能运行得越快。

CPU厂商已经找到了增加CPU的FSB有效速度的方法。他们只是在每个时钟周期中发送了更多的指令。所以CPU厂商已经有每个时钟周期发送两条指令的办法(AMD CPU),或甚至是每个时钟周期四条指令(Intel CPU),而不是每个时钟周期发送一条指令。那么在考虑CPU和看FSB速度的时候,必须认识到它不是真正地在那个速度下运行。Intel CPU是“四芯的”,也就是它们每个时钟周期发送4条指令。这意味着如果看到800MHz的FSB,潜在的FSB速度其实只有200MHz,但它每个时钟周期发送4条指令,所以达到了800MHz的有效速度。相同的逻辑也适用于AMD CPU,不过它们只是“二芯的”,意味着它们每个时钟周期只发送2条指令。所以在AMD CPU上400MHz的FSB是由潜在的200MHz FSB每个时钟周期发送2条指令组成的。

这是重要的,因为在超频的时候将要处理CPU真正的FSB速度,而不是有效CPU速度。

速度等式的倍频部分也就是一个数字,乘上FSB速度就给出了处理器的总速度。例如,如果有一颗具有200MHz FSB(在乘二或乘四之前的真正FSB速度)和10倍频的CPU,那么等式变成:

(FSB)200MHz×(倍频)10 = 2000MHz CPU速度,或是2.0GHz。

在某些CPU上,例如Intel自1998年以来的处理器,倍频是锁定不能改变的。在有些上,例如AMD Athlon 64处理器,倍频是“封顶锁定”的,也就是可以改变倍频到更低的数字,但不能提高到比最初的更高。在其它的CPU上,倍频是完全放开的,意味着能够把它改成任何想要的数字。这种类型的CPU是超频极品,因为可以简单地通过提高倍频来超频CPU,但现在非常罕见了。

在CPU上提高或降低倍频比FSB容易得多了。这是因为倍频和FSB不同,它只影响CPU速度。改变FSB时,实际上是在改变每个单独的电脑部件与CPU通信的速度。这是在超频系统的所有其它部件了。这在其它不打算超频的部件被超得太高而无法工作时,可能带来各种各样的问题。不过一旦了解了超频是怎样发生的,就会懂得如何去防止这些问题了。

* 在AMD Athlon 64 CPU上,术语FSB实在是用词不当。本质上并没有FSB。FSB被整合进了芯片。这使得FSB与CPU的通信比Intel的标准FSB方法快得多。它还可能引起一些混乱,因为Athlon 64上的FSB有时可能被说成HTT。如果看到某些人在谈论提高Athlon 64 CPU上的HTT,并且正在讨论认可为普通FSB速度的速度,那么就把HTT当作FSB来考虑。在很大程度上,它们以相同的方式运行并且能够被视为同样的事物,而把HTT当作FSB来考虑能够消除一些可能发生的混淆。

怎样超频

那么现在了解了处理器怎样到达它的额定速度了。非常好,但怎样提高这个速度呢?

超频最常见的方法是通过BIOS。在系统启动时按下特定的键就能进入BIOS了。用来进入BIOS最普通的键是Delete键,但有些可能会使用象F1,F2,其它F按钮,Enter和另外什么的键。在系统开始载入Windows(任何使用的OS)之前,应该会有一个屏幕在底部显示要使用什么键的。

假定BIOS支持超频*,那一旦进到BIOS,应该可以使用超频系统所需要的全部设置。最可能被调整的设置有:

倍频,FSB,RAM延时,RAM速度及RAM比率。

在最基本的水平上,你唯一要设法做到的就是获得你所能达到的最高FSB×倍频公式。完成这个最简单的办法是提高倍频,但那在大多数处理器上无法实现,因为倍频被锁死了。其次的方法就是提高FSB。这是相当具局限性的,所有在提高FSB时必须处理的RAM问题都将在下面说明。一旦找到了CPU的速度极限,就有了不只一个的选择了。

如果你实在想要把系统推到极限的话,为了把FSB升得更高就可以降低倍频。要明白这一点,想象一下拥有一颗2.0GHz的处理器,它采用200MHz FSB和10倍频。那么200MHz×10 = 2.0GHz。显然这个等式起作用,但还有其它办法来获得2.0GHz。可以把倍频提高到20而把FSB降到100MHz,或者可以把FSB升到250MHz而把倍频降低到8。这两个组合都将提供相同的2.0GHz。那么是不是两个组合都应该提供相同的系统性能呢?

不是的。因为FSB是系统用来与处理器通信的通道,应该让它尽可能地高。所以如果把FSB降到100MHz而把倍频提高到20的话,仍然会拥有2.0GHz的时钟速度,但系统的其余部分与处理器通信将会比以前慢得多,导致系统性能的损失。

在理想情况下,为了尽可能高地提高FSB就应该降低倍频。原则上,这听起来很简单,但在包括系统其它部分时会变得复杂,因为系统的其它部分也是由FSB决定的,首要的就是RAM。这也是我在下一节要讨论的。

* 大多数的零售电脑厂商使用不支持超频的主板和BIOS。你将不能从BIOS访问所需要的设置。有工具允许从Windows系统进行超频,但我不推荐使用它们,因为我从未亲自试验过。

RAM及它对超频的影响

如我之前所说的,FSB是系统与CPU通信的路径。所以提高FSB也有效地超频了系统的其余部件。

受提高FSB影响最大的部件就是RAM。在购买RAM时,它是被设定在某个速度下的。我将使用表格来显示这些速度:

PC-2100 - DDR266
PC-2700 - DDR333
PC-3200 - DDR400
PC-3500 - DDR434
PC-3700 - DDR464
PC-4000 - DDR500
PC-4200 - DDR525
PC-4400 - DDR550
PC-4800 - DDR600

要了解这个,就必须首先懂得RAM是怎样工作的。RAM(Random Access Memory,随机存取存储器)被用作CPU需要快速存取的文件的临时存储。例如,在载入游戏中平面的时候,CPU会把平面载入到RAM以便它能在任何需要的时候快速地访问信息,而不是从相对慢的硬盘载入信息。

要知道的重要一点就是RAM运行在某个速度下,那比CPU速度低得多。今天,大多数RAM运行在133MHz至300MHz之间的速度下。这可能会让人迷惑,因为那些速度没有被列在我的图表上。

这是因为RAM厂商仿效了CPU厂商的做法,设法让RAM在每个RAM时钟周期发送两倍的信息*。这就是在RAM速度等级中DDR的由来。它代表了Double Data Rate(两倍数据速度)。所以DDR 400意味着RAM在400MHz的有效速度下运转,DDR 400中的400代表了时钟速度。因为它每个时钟周期发送两次指令,那就意味着它真正的工作频率是200MHz。这很像AMD的“二芯”FSB。

那么回到RAM上来。之前有列出DDR PC-4000的速度。PC-4000等价于DDR 500,那意味着PC-4000的RAM具有500MHz的有效速度和潜在的250MHz时钟速度。

所以超频要做什么呢?

如我之前所说的,在提高FSB的时候,就有效地超频了系统中的其它所有东西。这也包括RAM。额定在PC-3200(DDR 400)的RAM是运行在最高200MHz的速度下的。对于不超频的人来说,这是足够的,因为FSB无论如何不会超过200MHz。

不过在想要把FSB升到超过200MHz的速度时,问题就出现了。因为RAM只额定运行在最高200MHz的速度下,提高FSB到高于200MHz可能会引起系统崩溃。这怎样解决呢?有三个解决办法:使用FSB:RAM比率,超频RAM或是购买额定在更高速度下的RAM。

因为你可能只了解那三个选择中的最后一个,所以我将来解释它们:

FSB:RAM比率:如果你想要把FSB提高到比RAM支持的更高的速度,可以选择让RAM运行在比FSB更低的速度下。这使用FSB:RAM比率来完成。基本上,FSB:RAM比例允许选择数字以在FSB和RAM速度之间设立一个比率。假设你正在使用的是PC-3200(DDR 400)RAM,我之前提到过它运行在200MHz下。但你想要提高FSB到250MHz来超频CPU。很明显,RAM将不支持升高的FSB速度并很可能会引起系统崩溃。为了解决这个,可以设立5:4的FSB:RAM比率。基本上这个比率就意味着如果FSB运行在5MHz下,那么RAM将只运行在4MHz下。

更简单来说,把5:4的比率改成100:80比率。那么对于FSB运行在100MHz下,RAM将只运行在80MHz下。基本上这意味着RAM将只运行在FSB速度的80%下。那么至于250MHz的目标FSB,运行在5:4的FSB:RAM比率中,RAM将运行在200MHz下,那是250MHz的80%。这是完美的,因为RAM被额定在200MHz。

然而,这个解决办法不理想。以一个比率运行FSB和RAM导致了FSB与RAM通信之间的时间差。这引起减速,而如果RAM与FSB运行在相同速度下的话是不会出现的。如果想要获得系统的最大速度的话,使用FSB:RAM比率不会是最佳方案。

超频RAM

超频RAM实在是非常简单的。超频RAM的原则跟超频CPU是一样的:让RAM运行在比它被设定运行的更高的速度下。幸好两种超频之间的类似之处很多,否则RAM超频会比想象中复杂得多。

要超频RAM,只需要进入BIOS并尝试让RAM运行在比额定更高的速度下。例如,可以设法让PC-3200(DDR 400)的RAM运行在210MHz的速度下,这会超过额定速度10MHz。这可能没事,但在某些情况下会导致系统崩溃。如果这发生了,不要惊慌。通过提高RAM电压,问题能够相当容易地解决。RAM电压,也被称为vdimm,在大多数BIOS中是能够调节的。用最小的可用增量提高它,并测试每个设置以观察它是否运转。一旦找到一个运转的设置,可以要么保持它,要么尝试进一步提高RAM。然而,如果给RAM加太多电压的话,它可能会报废。

在超频RAM时你只还需要担心另一件事,就是延时。这些延时是在某些RAM运行之间的延迟。基本上,如果你想要提高RAM速度的话,可能就不得不提高延时。不过它还没有复杂到那种程度,不应该难到无法理解的。

严格意义上的超频是一个广泛的概念,它是指任何提高计算机某一部件工作频率而使之在非标准频率下工作从而提高该部件工作性能的行为,其中包括CPU超频、主板超频、内存超频、显示卡超频和硬盘超频等等很多部分。

通常所说的CPU超频仅仅是提高CPU的工作频率而采用的一种方法。一般来说,CPU制造商都会为了保证产品质量而预留一点频率余地,例如实际能达到2GHz的P4CPU可能只标称成1.8GHz来销售,因此CPU超频方法可以使你在花费很小的情况下提高计算机系统的性能。

在过去,我们超频的方法通常是将CPU的时钟速度加快。如今,许多主板厂商都开始在自己的产品上作了人性化的超频功能,因此超频的方法也从以前的硬超频变成了现在更方便更简单的软超频。所谓硬超频是指通过主板上面的跳线或者DIP开关手动设置外频和CPU、内存等工作电压来实现的;而软超频指的是在系统的BIOS里面进行设置外频、倍频和各部分电压等参数。一些主板厂商还推出了傻瓜超频功能,就是主板可以自动以1MHz为单位逐步提高外频频率,自动为用户找到一个让CPU能够稳定运行的最高频率。

对超频而言,冷却装置是非常重要的。如果你在超频以后,可以启动计算机,但在一分钟之内,你的机器死掉了,这通常是你的CPU过热的原因。我们选用的冷却装置通常是散热片、风扇或者是同时安装。你可以在电脑城里面找到这些设备。在选购散热片的时候,你要确信你的CPU和它匹配。散热片的表面必须与CPU的表面完全接触。你可以将散热片与CPU粘在一起,必要的话,在散热片上可以加装一个小风扇。同时,机箱的散热也非常重要。

超频对CPU和主板上的元件是有害的,但在方法得当的情况下,这种损害并不会立刻降临到你的CPU上,只有当你的CPU在较高的温度下运行的时候才会产生。通常,一颗CPU的寿命是10年左右,超频会缩短CPU的寿命

超频,几乎是上个世纪末DIYer的唯一话题。DIYer从中享受到的,是速度提升的极速快感,是超频知识的美味佳肴,是自己动手的成就感。但那些超频神话毕竟会随着时间而慢慢退色,但新一代的硬件产品中又会有超频英雄涌现,今天我们带给读者的超频不再是血脉扩展、提心吊胆,而是在安静和平稳之中享受超频带来的乐趣,我们称它为安全超频。

PART1还有什么不能超?

——对超频产品的反思

为了让计算机安全稳定地运行,各大配件生产厂商都对产品的运行频率极限有所保留,于是为超频留下了无穷的余地。那么,今天的硬件产品到底还有哪些具备超频的潜质哪?

CPU:延续不老的传说

● CPU超频意义还在?

如今CPU的速度一般不会成为操作系统运行的瓶颈,不过在2002年末到2003年初推出的一系列应用软件中,对CPU要求极高的软件不乏。举个例子,一个使用Pentium 4 1.6A GHz CPU+GeForce4 MX440显卡的用户,运行《极品飞车热力追踪Ⅱ》游戏软件时,已经不能获得很好的速度感,画面停滞现象偶然发生,大大影响了游戏的可玩性。随即该用户通过超频手段,把外频成功提升到133MHz,这样CPU超频到2.13GHz的同时也大大增加了FSB的带宽。再运行游戏,运行速度已经有了明显的改观,可玩性有了很大的提高。同样的情况还发生在MPEG4视频压缩上。如果你经常把租来的DVD影片压缩制作成MPEG4格式文件保存到硬盘上的话,你或许能深刻体会到超频带来的好处——能为你节省以小时为单位的时间。

● 谁是超频明星?

一个易于超频的CPU最好具备以下的条件:制造工艺精良、发热量较小、耐热性能较好、没有锁频措施、离内核极限频率较远以及具备自我保护能力。

如今主流CPU的制造工艺都转向了0.13微米,如Northwood核心的Intel Pentium4 CPU和Thoroughbred核心的AMD AthlonXP CPU都是采用0.13微米工艺制造,这类新工艺的CPU比0.18微米工艺的CPU拥有了更低的电压和发热量,也就更有利于超频。

要问当今最红的超频之星是谁,我可以脱口而出:“Pentium4 1.8A GHz以及AthlonXP 1700+(Thoroughbred B0)CPU”。不是其它型号的CPU超频能力不行,而是这两个CPU的超频能力太出众。Pentium4 1.8A GHz是目前你能得到最低频率的Northwood核心Pentium4。Pentium 4 1.8A GHz目前的超频记录是超频到3.6GHz——速度增加了一倍!当然不是每个人都有这么好的运气,但是一般Pentium4 1.8A GHz外频提升到133MHz基本上不会有问题,此时CPU的主频为2.4GHz,性能有了质的飞跃。

Northwood核心的Pentium4采用0.13微米工艺制造,有着良好的超频能力,其中1.6GHz、1.8GHz的型号超频能力最为强劲,其它型号也具备较大的超频空间。

Thoroughbred B0核心的AthlonXP是AMD 0.13微米工艺的产品,其中1700+和1800+是目前的超频明星,目前市售的均未锁定倍频,可以轻易地超到2400+甚至更高的水平。

主板:超频基石

● 超频主板应该具备的素质

一款易于超频的主板最好具备成熟的布线设计、合理的元件摆放、CPU周边留有充裕的空间、游刃有余的供电电路、丰富的电压/频率调节选项、丰富的内存参数调节选项、完善的FSB/PCI/AGP频率比、完善的硬件监控与超频失败恢复措施。

在近期主流的主板中,以AMD平台的nVIDIA nForce2和Intel平台的i845PE超频性能最为突出。特别是nForce2,配合没有锁频的AthlonXP 1700+,可以超出很多花样。目前该组平台已经成功把AthlonXP的外频提升到220MHz之高,再配合双通道DDR333内存,性能发挥得淋漓尽致。

● 各路厂家挖空心思

从Inetl推出超频主板可以看出,主板厂家对超频能力越来越重视,差不多都针对超频推出了很多功能,如硕泰克的自动超频功能、升技SoftMenuⅢ、华硕CPU Parameter Recall等功能,均为超频提供了很大的方便。

内存:再攀巅峰

● 内存为何要超频?

从来没有人质疑过内存超频的意义,或许是因为内存带宽瓶颈已经被作为一个关键问题讨论已久。大家可以看到,目前无论是Intel平台还是AMD平台都是在内存带宽上面喋喋不休,甚至一代Pentium4芯片组均是围着内存带宽在打转。目前Pentium4处理器的FSB带宽分别有3.2GB/s和4.2GB/s这两种,而AthlonXP则有2.1GB/s和2.7GB/s这两种。而且外频提高后FSB带宽也会水涨船高。这时若非采用双通道DDR技术,即使是DDR400也只能提供3.2GB/s的速度。不难预见,对内存超频带来的性能提升是明显的。

从上而下分别是金士顿(KingSton)以及胜创(KingMax)

相对于AthlonXP老旧的EV6前端总线而言,四倍速率的Pentium4前端总线则更有利于内存超频后的性能发挥。比如你在使用一套Pentium4 1.8GHz+i845E+DDR266内存的系统,这颗CPU的FSB速度为400MHz,带宽为3.2GB/s,而DDR266内存的带宽仅为2.1GB/s,远未达到FSB的带宽水平,此时对内存进行超频则能有效发挥,从而提升速度。

● 从内存条本身抓起

无论怎么说,一条质量优越的内存条依然是内存超频的根本,也是系统稳定的基石。如果你只是想追求一般的超频性能和较为稳定的特性,那么Kingston和KingMax的DDR内存条也是很好的选择,它们的产品一般能比标称频率再往上一档,并且还能保持不错的稳定性。

显卡:尚待挖掘

● 显卡性能够用了吗

“请问你的显卡性能够用了吗?”我随便对在线的网友群发了这个问题。“远远不够,我搞一下就可以让性能超强的NV30 Ultra彻底跪倒。”网友Cho如是说,“只要我把游戏的分辨率稍微调高一些,并打开8X FSAA以及8X AF的话。”从网友的回答当中,我们不难看到,即使目前显卡的性能再厉害,在苛刻的3D应用面前也是不堪一击的。

● 显卡超频是否有用

和上一个问题不一样,这次的答案再也没有不一致的现象出现。“没用。性能提高有限,稳定性下降,弄不好还卡毁机亡。”大伙儿几乎异口同声。结论很容易得出,单纯地对内核/显存进行超频在新推出的显卡面前是毫无意义之举,因为一款显卡如果不够用的话,那么要不是它已经不支持新的API,要么就是架构上已经开始落后,这时候超频通常也不能达到所需的效果,看来能在显卡超频上获得明显效果的只有那些老显卡用户。

Radeon9500一时间炙手可热,皆因其可以通过改造打开被屏蔽的4条渲染流水线,性能得到成倍的增长

不过2003年初超频迷们依然对显卡津津乐道,这又是为什么呢?其实大家讨论的是一种变相的超频行为——把ATi Radeon9500通过修改变成Radeon9700!方法有硬件修改和软件修改两种,但都是通过打开被屏蔽的4条硬件渲染流水线来达到提速目的。由于修改后流水线数目加倍,所以速度提升几乎达到了100%,这种“超频”非常有意义。
[1]
PART2因地制宜

—典型超频实例分析

关于超频,其实笔者并不是什么发烧友,甚至被人认为有些小农意识,小康则安是我的典型写照。曾经拿到一颗极品Pentium III 550E,也不过被我略超133外频至733MHz。我对超频的一贯信仰是:超标准频率,而且要懂得满足。成功的超频案例无疑是很好的学习范本,下面就让我们来领略各位硬件高手是如何征服那些顽固的配件,去冲击一个又一个性能巅峰。

实例一:

搞定Pentium 4A 2.4GHz

在超频经验中,第一个想提到的是最近令人难忘的400前端总线P4 2.4GHz。2.4GHz的Pentium 4是一颗代号A的处理器,也就是400前端总线,对于普通人来说,这颗处理器绝非优良的超频材质。

??困难:

它的频率组成为100MHz外频,24倍频,由于Intel将其处理器的倍频锁住,所以,我们超频时只能调整外频,此时,24倍频就给我们带来了极大的麻烦。只要稍微调高10MHz外频,我们就会发现主频提高了240MHz,按照我的习惯,设置为133外频的话就会提高足足800MHz主频,达到3.2GHz,这是目前尚未发布的高频Pentium 4处理器。另一方面,我的主板和内存配置也不是非常适合超频的,因为我使用的是AOpen的AX4T II,一款Intel i850芯片组主板,配套的是三星PC800 ECC内存。众所周知,i850不支持533外频,RDRAM超频能力也很薄弱。看起来,超频前景并不乐观。

尝试:

抱着姑且一试的心情,我开始了超频的尝试。开机后将外频直接提升至133MHz外频,重启电脑后系统一片黑屏,连续长音警报不断——内存出错。关闭电脑,清除CMOS,重启后在BIOS中先关闭内存的ECC校验功能,ECC纠错校验会对内存的超频性能有较大的削弱。然后超频重启,终于看到了自检画面。不过超频并不稳定,进入系统运行一段时间后会蓝屏或者自动重启。随后的步骤就是加强散热了。首先想到的是i850主板标准不支持533外频,可能是MCH发热过高,所以,在原本安装了散热片的MCH上重新安装了一个带风扇的散热器。同时,又将CPU的原装风扇改换成了AVC的高频Pentium 4专用铜制风扇。此时的超频才算稳定了。

看起来叙述似乎非常简单,但是实际上期间经历的痛苦不计其数,由于AX4T II的处理器前端总线和内存频率同步,配套的4条三星RDRAM只有2条能超到PC 1066,所以不得不将两条内存闲置。凡此种种事件让超频显得复杂繁琐。

案例总结:

1. 尽可能使用标准外频,例如100、133,或者更高,标准外频不仅有利于其他设备稳定运行,对于主板芯片组的稳定性也有提高,可能它们直接调用PCI分频,一旦频率不标准,系统设备就会运行不正常。

2. 超频不要贪多,或许你现在能稳定用上150外频,但你不能保证系统能稳定运行1年,甚至3个月都不一定,曾有报道Pentium 4在极端超频后3个月就报废,而在笔者此例中,133外频就已经超出了i850主板的标准限制,更高频率难保MCH不会发热过高而烧毁。

3. 不要试图修改主板或者使用夸张的散热设备,DIY是为了使用的,修改主板调高电压等之类的做法破坏主板结构,很可能导致稳定性降低,且失去保修,却只能得到区区几MHz的性能提升,得不偿失,而一些转速夸张的散热风扇带来的噪音也不是普通人能忍受的。

实例二:

Radeon9500的惊人改变

与GeForce4 Ti4200相比,Radeon 9500/9700就比较特殊了。Radeon 9700和9500是以R300为核心的支持DirectX 9.0的显卡,ATi公司在开发过程中似乎得到了一些启示,发现市场上销售的不同档次显卡如果只是频率上的差异,往往低频率版本销售良好,而高频率版本就很差。于是,9500/9700就产生了一系列的防超频策略。

困难:

ATi的第一招防超频方法是锁频。它通过BIOS中锁定频率,使很多人发现使用Powerstrip或者Rivatuner等各种超频软件都无法调节其核心频率和显存频率,这就让我们的超频计划完全打乱了。第二招则更加彻底,Radeon 9500/9500 Pro/9700之间有着非常巨大的结构差异,Radeon 9500只有4条渲染流水线,而Radeon 9500 Pro则增加到了8条,Radeon 9700更在9500 Pro的基础上增加到256bit显存位宽,从而提供了2倍的显存带宽。结构上的改动,使我们不能简单地以超频9500达到9500 Pro的性能。

尝试:

那么难道我们就真的不能超频了吗?非也,笔者就以R300系列中目前售价最为低廉的Radeon 9500为范本来进行一番实际操作,展示一下特殊显卡的特殊“超频”方法。选取一块标准公版的Radeon 9500,配备支持AGP 8X的P4X400主板,全部装配完毕后进入系统,安装CATALYST 3.1驱动程序。这样的显卡显然不能直接超频,因为我们会在Powerstrip中看到n/a频率标记。那么我们该如何解决呢?其实答案并不是那么复杂的,虽然ATi尝试通过BIOS锁定频率,但是制作Powerstrip和Rivatuner的软件开发者却有办法跳过锁定的代码。ATi在设备ID号中设定为4E45为不可超频,而4E44是可超频,过去我们曾经通过修改BIOS来进行超频,但是使用最新版本的Powerstrip和Rivatuner却可以轻易越过这一限制。目前最新的Powerstrip版本为3.31 Beta Build 372,而Rivatuner则是2.0 RC 12.2。这两个版本都可以在www.mydrivers.com处找到。

刚才我们只是通过软件破解了ATi对Radeon 9500的第一招限制,对于第二招又该如何破解呢?事实上,ATi对Radeon 9500动的手脚只不过是一个ID识别的操作,使驱动程序屏蔽了额外的4条流水线,使用Rivatuner提供的补丁文件就能打开额外的4条流水线。

点击RivaTuner的高级菜单中画蓝色圈的按钮打开补丁文件,选中下载后释放的rts文件。

如果是Windows 2000/XP,就选择Soft9x00 w2k.rts,如果是Windows 9X系统就选择Soft9x00 w9x.rts,目前还不支持NT系统。

此时会跳出一个让你选择的框,选中force Radeon 9700 Capabilities,然后点击继续。随后的事就是要找到ATi驱动程序文件ati2mtag.sys,这个文件在Win2K/XP的系统目录system32\

drivers\下,如果是Windows 9x则在system目录下。选中文件后点击Patch我们就获得了破解后的驱动程序。至此,破解工作就全部完成,我们可以在9500中获得8条渲染流水线的功能,换句话说就是变成了Radeon 9500 Pro,如果你的9500是256bit显存位宽版本的话,那就变成了Radeon 9700!

Radeon 9500的超频有些另类,破解驱动在我的理解中属于广义的超频概念,当然,如果各位有兴趣的话也可以纳入自己的理解范围。具体的超频工作在这里我就不多作介绍了,事实上它跟其他典型显卡超频并没有什么差异。